Baxter Posets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane posets, special posets, and permutations

We study the self-dual Hopf algebra HSP of special posets introduced by Malvenuto and Reutenauer and the Hopf algebra morphism from HSP to the Hopf algebra of free quasi-symmetric functions FQSym given by linear extensions. In particular, we construct two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets, the second one on heap-ordered forests. An explicit isomor...

متن کامل

Signed Posets

We define a new object, called a signed poset, that bears the same relation to the hyperoctahedral group B n (i.e., signed permutations on n letters), as do posets to the symmetric group S n. We then prove hyperoctahedral analogues of the following results: (1) the generating function results from the theory of P-partitions; (2) the fundamental theorem of finite distributive lattices (or Birkho...

متن کامل

Tchebyshev Posets

We construct for each n an Eulerian partially ordered set Tn of rank n + 1 whose ce-index provides a non-commutative generalization of the n-th Tchebyshev polynomial. We show that the order complex of each Tn is shellable, homeomorphic to a sphere, and that its face numbers minimize the expression max|x|≤1 ∣∣∣∑nj=0(fj−1/fn−1) · 2−j · (x− 1)j∣∣∣ among the f -vectors of all (n − 1)-dimensional si...

متن کامل

Involutions on Baxter Objects

Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for the number of objects fixed under this involution, showing that it is an instance of Stembridge’s ...

متن کامل

Involutive Yang-baxter Groups

In 1992 Drinfeld posed the question of finding the set-theoretic solutions of the Yang-Baxter equation. Recently, Gateva-Ivanova and Van den Bergh and Etingof, Schedler and Soloviev have shown a group-theoretical interpretation of involutive non-degenerate solutions. Namely, there is a oneto-one correspondence between involutive non-degenerate solutions on finite sets and groups of I-type. A gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2019

ISSN: 1077-8926

DOI: 10.37236/7273